
LLNL-PRES-813321
This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory
under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

RAJA Portability Suite Update

Rich Hornung, LLNL, with
contributions from many othersSeptember 1-2, 2020

P3HPC Virtual Forum

LLNL-PRES-813321
2

Our open source software tools enable applications to run on
HPC systems in a performance portable way

CHAI: C++ array
abstractions
§ Automate data copies

giving look and feel of
unified memory

Single-source application

RAJA CHAI Umpire

Diverse hardware ecosystem
camp

RAJA: C++ kernel execution
abstractions
§ Enable single-source

application source code
insulated from hardware and
programming model details

Umpire: Memory management
§ High performance memory

operations, such as pool
allocations, with native C++, C,
Fortran APIs

camp: C++ metaprogramming
facilities
§ Focused on HPC

compiler compatibility

https://github.com/LLNL/RAJA

https://github.com/LLNL/CHAI

https://github.com/LLNL/Umpire

https://github.com/LLNL/camp

LLNL-PRES-813321
3

§ LLNL WSC production codes use the tools in a variety of combinations
— Applications: multiple rad-hydro, deterministic & MC transport, ICF, engineering
— Support libraries: EOS, TN burn, HE chemistry, sliding contact, AMR, mesh-to-mesh linking

§ Other LLNL program apps: NIF VBL, magnetic confined plasma simulations, …

§ The tools are part of the ECP ST ecosystem used in ECP apps and libraries, such as
— SW4 (AD-EQSIM)
— GEOS (AD-Subsurface)
— ExaSGD (AD)
— LLNL ATDM
— SUNDIALS, DevilRay (ST-Alpine), MFEM (CEED co-design)

Applications rely on these tools to run on current systems and
evolve to future platforms (Frontier, Aurora, El Capitan, …)

LLNL institutionally-funded RADIUSS effort facilitates adoption across the lab.

LLNL-PRES-813321
4

§ 5 releases on GitHub

§ New released features include:
— Initial HIP back-end support for all RAJA features (AMD GPUs)
— Initial support for asynchronous kernel execution (also works with Umpire and CHAI)
— Work groups (fuse many small GPU kernels into one kernel launch)
— A “Multi-view” abstraction (enabling multiple arrays to share indexing arithmetic)
— Multiple sort algorithms
— Expanded GPU capabilities and performance improvements

• Block-direct, thread, warp, bitmask execution policies, atomic local array type for atomics in GPU shared mem
— Dynamic “plug-in” support and integration with Kokkos performance tools (J. Hynes – summer)

§ Notable external engagements
— Tutorials at ATPESC 2019, ECP Annual Meeting 2020; ExaSGD, SW4 Hack-a-thons
— Created DESUL (DoE Standard Utility Library) org and repo (https://github.com/desul/desul)

• Collaboration with Sandia and Oak Ridge, eventually other C++ projects
— Working with Marvell on RAJA Perf Suite optimization for ARM processors

Notable RAJA accomplishments since last year’s meeting

https://github.com/desul/desul

LLNL-PRES-813321
5

chai::ManagedArray<double> a1(N); chai::ManagedArray<double> a2(N);

RAJA::resource::Cuda cuda1;
RAJA::resource::Cuda cuda2;

auto event1 = forall<cuda_exec_async>(&cuda1, RangeSegment(0, N),
[=] RAJA_DEVICE (int i) { a1[i] = ... });

auto event2 = forall<cuda_exec_async>(&cuda2, RangeSegment(0, N),
[=] RAJA_DEVICE (int i) { a2[i] = ... });

cuda1.wait_on(&event2); // or event2.wait();

forall<cuda_exec_async>(&cuda1, RangeSegment(0, N),
[=] RAJA_DEVICE (int i) { a1[i] *= a2[i]; });

forall<seq_exec>(RangeSegment(0, N),
[=] (int i) { printf(“a1[%d] = %f \n”, i, a1[i]); });

New RAJA support for GPU streams enables asynchronous
execution (M. Davis, T. Scogland, D. Beckingsale)

Resource objects passed to
RAJA execution methods.

RAJA execution methods
return event objects that can

be queried or waited on.

CHAI arrays know which resources are
using them so host-device data transfers

can happen as soon as data is ready.

Plan to explore similar extensions to other programming model back-ends.

LLNL-PRES-813321
6

Key use case: Packing/unpacking halo data for MPI comm**

RAJA “work groups” enable many small kernels to be packed into
one GPU launch to reduce overhead (J. Burmark, P. Robinson)

Field arrays with halo data MPI buffer Field arrays with halo data MPI buffer

kernels

threads
threads

Multiple data
copies performed

in one kernel
launch

Fuse kernels

Many kernels launched Fuse and launch one kernel

**In 2 production apps, this yields 5-15% overall performance boost

LLNL-PRES-813321
7

§ 6 releases on GitHub

§ New released features include:
— Support for HIP back-end (AMD GPUs)
— Support for OpenMP target back-end (alternative mechanism for managing data)
— Support for OneAPI back-end (SYCL support for Intel GPUs)
— Zero-byte allocations supported as a native concept (track allocations to specific allocator)
— Asynchronous copy and memset operations

• Works with RAJA and CHAI to overlap data transfer and compute operations
— Improved “replay” support

• Binary capability to handle large (100G+) replay files
• Additional memory operations (copy, etc.) are now recorded also

— Added multi-device support for CUDA, HIP, and OpenMP target

Notable Umpire accomplishments since last year’s meeting

LLNL-PRES-813321
8

§ New released features include:
— Backtrace support (e.g., track allocations in app codes)
— Additional memory operations, such as prefetch for NVIDIA GPUs
— NV memory file allocation support (A. Perez – summer)

§ Notable external engagements
— Tutorial at ECP Annual Meeting 2020; ExaSGD, SW4 Hack-a-thons

Umpire accomplishments, ctd…

LLNL-PRES-813321
9

§ 3 releases on GitHub

§ New released features include:
— Support for AMD HIP programming model (AMD GPUs)
— Use of Umpire’s fast Judy array-based map implementation to store pointer records
— Transition to unified logging across Umpire and CHAI
— Adoption of RAJA “plugin” mechanism which allows CHAI to automatically integrate with

RAJA when libraries are built together
— ”Managed pointer” simplifies use of virtual class hierarchies across memory spaces
— Eviction capability is easy to use and enables integrated apps to run larger problems by

avoiding pool fragmentation

Notable CHAI accomplishments in the past year

LLNL-PRES-813321
10

§ New CHAI ‘managed_ptr’ enables such code to be run on GPUs without a major refactor

§ This requires methods to clone objects and host-device decorations on constructors

CHAI ‘managed_ptr’ solution simplifies use of virtual class
hierarchies across host/device memories (P. Robinson, A. Dayton)

void overlay(Shape* shape, double* mesh_data) {
chai::managed_ptr< Shape > mgd_shape = shape->makeManaged();
RAJA::forall< cuda_exec > (... {

mgd_shape->processData(mesh_data[i]);
});
mgd_shape.free();

}

chai::managed_ptr< Shape > Sphere::makeManaged() { ... }

__host__ __device__ Sphere::Sphere(...) { ... }

LLNL-PRES-813321
11

CHAI eviction capability yields significant memory and execution
time benefits for multiphysics apps (P. Robinson, A. Dayton)

A state A temp A state
Umpire Pool

GPU memory
“A” phase

“B” phase

Tim
e Step

A state B state A state
Umpire Pool

Max
available
size for B

chai::getResourceMgr()->
evict(chai::CPU, chai::GPU);

A state A temp A state
Umpire Pool

GPU memory
“A” phase

“B” phase
Tim

e Step

B state

Umpire Pool

Max available size for B

LLNL-PRES-813321
12

Other features in
development

LLNL-PRES-813321
13

using Vec_type = RAJA::StreamVector<double, 2>;
using Vecidx_type = RAJA::VectorIndex<int, Vec_type>;

RAJA::kernel< KernelPolicy<...vector_exec<...>...> >(segments,
[=] (int m, int d, int g, Vecidx_type z) {

phi(m, g, z) += L(m, d) * psi(d, g, z);
});

RAJA vector interface can encapsulate vector intrinsics so code
will SIMD-ize transparently (A. Kunen)

psi loads vector in zL loads scalar

Bcast scalar to vector

SIMD multiplyphi loads vector in z

SIMD add

phi stores vector in z

RAJA can automatically fuse
these into a single FMA

instruction

registers

Vectorize operations
along ‘z’ index

LLNL-PRES-813321
14

§ Potentially more flexible than
RAJA::kernel interface
— Simpler run time policy

selection (e.g., CPU or GPU)

— New nested loop patterns

§ Opens up hierarchical
parallelism opportunities

§ Aligns well with MFEM
algorithm structures macro
layers

RAJA “Teams” prototype being developed in collaboration with
the MFEM team (A. Vargas)

int N = ...;
launch<launch_policy>(select_cpu_or_gpu,

Resources(Teams(N), Threads(N)),
[=] RAJA_HOST_DEVICE(LaunchContext ctx) {
loop<teams_pol>(ctx, RangeSegment(0, N), [&](int r) {

loop<threads_pol>(ctx, RangeSegment(r, N), [&](int c) {
M(r, c) = ...;

});

loop<threads_pol>(...);

}); // teams loop (r)
} // outer lambda

); // launch

“Upper triangular” loop pattern example

LLNL-PRES-813321
15

Our Argonne ECP collaborators have made substantial progress
toward a RAJA SYCL back-end (B. Homerding, et al.)

§ ECP SW4 app and much of RAJA Perf
Suite working

§ Performance looks promising

§ Working through memory
management issues

§ Work remains to support all RAJA
features and resolve performance
issues

Mean Runtime Report (sec.) , ,
Kernel , Base_SYCL , RAJA_SYCL
Basic_DAXPY , 0.263559 , 0.247529
Basic_IF_QUAD , 0.192065 , 0.204579
Basic_INIT3 , 0.407615 , 0.371487
Basic_MULADDSUB , 0.284180 , 0.261049
Basic_NESTED_INIT , 0.468795 , 0.491765
Lcals_DIFF_PREDICT , 0.495185 , 0.488606
Lcals_EOS , 0.382110 , 0.458804
Lcals_FIRST_DIFF , 0.865176 , 0.796497
Lcals_GEN_LIN_RECUR , 0.716076 , 0.658505
Lcals_HYDRO_1D , 0.688161 , 0.627595
Lcals_HYDRO_2D , 1.251182 , 1.122538
Lcals_INT_PREDICT , 0.580458 , 0.627150
Lcals_PLANCKIAN , 0.044052 , 0.050743
Lcals_TRIDIAG_ELIM , 0.584795 , 0.670069
Apps_DEL_DOT_VEC_2D , 0.138256 , 0.201736
Apps_ENERGY , 0.664540 , 0.599901
Apps_FIR , 0.278217 , 0.413339
Apps_PRESSURE , 0.877004 , 0.827753
Apps_VOL3D , 0.110188 , 0.194256

LLNL-PRES-813321
16

§ RAJA
— Rich Hornung (PL)
— David Beckingsale
— Jason Burmark
— Noel Chalmers (AMD)
— Robert Chen
— Mike Davis
— Jeff Hammond (Intel)
— Brian Homerding (ANL)
— Holger Jones
— Will Killian (Millersville U.)
— Adam Kunen
— Olga Pearce
— Tom Scogland
— Arturo Vargas

Acknowledgements

§ Umpire
— David Beckingsale (PL)
— Noel Chalmers (AMD)
— Johann Dahm (IBM)
— Mike Davis
— Marty McFadden

§ CHAI
— David Beckingsale (PL)
— Alan Dayton
— Adam Kunen
— Peter Robinson

§ camp
— Tom Scogland (PL)
— Mike Davis
— Adam Kunen
— David Beckingsale

Disclaimer
This document was prepared as an account of work sponsored by an agency of the
United States government. Neither the United States government nor Lawrence
Livermore National Security, LLC, nor any of their employees makes any warranty,
expressed or implied, or assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights. Reference
herein to any specific commercial product, process, or service by trade name,
trademark, manufacturer, or otherwise does not necessarily constitute or imply its
endorsement, recommendation, or favoring by the United States government or
Lawrence Livermore National Security, LLC. The views and opinions of authors
expressed herein do not necessarily state or reflect those of the United States
government or Lawrence Livermore National Security, LLC, and shall not be used for
advertising or product endorsement purposes.

